secondary 2

15) $2 x^{\frac{1}{3}} 2 x^{\frac{3}{3}}=4 x^{\frac{4}{3}}$
16) $3 x^{\frac{5 \cdot}{3}: 2} \cdot n^{\frac{33}{23}}=3 n^{\frac{19}{6}}$ $\frac{10}{6}+\frac{9}{6}$
17)

$$
\begin{aligned}
\frac{\frac{10}{6}+\frac{1}{6}}{x^{5} y^{-2}\left(x^{3}\right)^{-3}}=x^{5} y^{-2}\left(-x^{(9)}\right) & =-x^{-4} y^{-2} \\
& =\frac{-1}{x^{4} y^{2}}
\end{aligned}
$$

2-4 Polynomial Vocab

I can identify the degree of a polynomial.

I can identify the number of terms in the polynomial (ie. the type of polynomial, trinomial, binomial, monomial).

Polynomials are named by degree and number of terms For a polynomial with one variable, the Degree is the largest exponent of that variable.

Polynomials are named by degree and number of terms
TERMS are always separated by addition/ positive signs or subtraction/ negative signs.

Terms	Name	Example
1	Monomial	$-x^{2}, x y, 44^{2} b^{3} c^{5}$
2	Dinonomial	$-x+y, x^{3}+3 x^{2}$,
3	Trinomial	$-x^{3}+2 x^{2}+3, x^{16}+y^{2}+a b$
$4+$	Polynomial $-x^{4}+2 x^{3}+2 x+1$	

Examples

$$
\begin{aligned}
& m+7 \text { Linear binomial } \\
& 1 \text { Constant monomial } \\
& -2 x^{3}-10 x^{2}+9 x-3 \text { Cubic polynomil }
\end{aligned}
$$

Quartic binomial

$$
x^{4}+3 x
$$

