Warm Up

2. $\frac{\sim 4 x^{5} y^{-3}}{4 x^{8} y^{2}}$

1-4 Rational Exponents

Reduce Assuming all variables are greater then or equal to zero.
(You can either do these using rational exponents or not.)

$$
\begin{aligned}
& \sqrt[2]{x^{6}}=x^{6 / 2} \\
& x \times x<x \times x
\end{aligned}
$$

$$
\begin{aligned}
& 1,8,27,64,125,216 \\
& a^{\left(\frac{1}{3}\right)}=\quad \begin{aligned}
1_{1}^{3} & \sqrt[3]{1}
\end{aligned}=1 \\
& 8^{\frac{1}{3}}=\sqrt[3]{8}=2 \\
& 27^{1 / 3}=\sqrt[3]{27}=3 \\
& 6^{4^{\frac{1}{3}}}=\sqrt[3]{64}=4
\end{aligned}
$$

$$
\begin{gathered}
1,8,27,64,125,216 \\
a^{\left(\frac{2}{3}\right)}=\sqrt[3]{a^{2}} \\
1^{2 / 3}=\sqrt[3]{1^{2}}=1 \\
8^{2 / 3}=\sqrt[3]{8^{2}}=2^{2}=4 \\
27^{2 / 3}=\sqrt[3]{27^{2}}=3^{2}=9
\end{gathered}
$$

$$
\left.\begin{array}{l}
1,16,81,256,625,1296 \\
a^{\left(\frac{3}{4}\right)}=\sqrt[4]{a^{3}} \\
16^{3 / 4}=\sqrt[4]{16^{3}}=2^{3}=8 \\
81^{3 / 4}=\sqrt[4]{81^{3}}=3^{3}=27 \\
99 \\
9 \\
1,4 \\
3333
\end{array}\right) .
$$

$$
a^{\left(\frac{m}{n}\right)}=\underline{\sqrt[n]{a^{m}}}=(\sqrt[n]{a})^{m}
$$

Fractional exponent

$$
a^{\frac{1}{n}}=\sqrt[n]{a}
$$

n is an integer bigger then or equal to 2

Write each of the following as a radical and simplify, if possible.

$$
\begin{gathered}
9^{\frac{1}{2}}=\sqrt{9}=3 \quad \begin{array}{c}
(-64)^{\frac{1}{3}} \\
\begin{array}{l}
\sqrt[3]{-64} \\
\\
-4
\end{array} \\
100^{\frac{1}{2}} \\
\sqrt{100}=10-100^{\frac{1}{2}}-\sqrt{100}=-10 \quad z^{\frac{1}{2}}
\end{array}
\end{gathered}
$$

You try

$$
\begin{gathered}
25^{\frac{1}{2}} \sqrt{25}=5 \quad(-27)^{\frac{1}{3}} \\
\sqrt[3]{-27}=-3 \\
-64^{\frac{1}{2}}=-\sqrt{64}=-8 \quad b^{\frac{1}{2}} \sqrt{b}
\end{gathered}
$$

Rewrite in exponent form

You try

$$
a^{\frac{m}{n}}=\sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m}
$$

a is real, m / n is a rational number in lowest terms with n bigger or equal to 2

Write each of the following as a radical and simplify, if possible.

$$
\begin{aligned}
& 25^{\frac{3}{2}} \\
& \begin{aligned}
(\sqrt{25})^{3} & =5^{3} \sqrt[3]{64^{2}} \\
& =125 \quad 4^{2} \\
& (-8)^{\frac{4}{3}} 16
\end{aligned} \\
& \begin{array}{r}
=125 \\
(-8)^{3} \\
\sqrt[3]{(-8)^{4}}
\end{array} \\
& (-2)^{4} \\
& -9^{\frac{5}{2}}-(\sqrt{9})^{5} \\
& \begin{array}{cc}
4^{2} & 7^{-3^{5}} \\
16 & \frac{7}{2}-243
\end{array} \\
& -81^{2} \\
& \begin{array}{l}
-(\sqrt{81})^{7} \\
-(9)^{7}
\end{array}
\end{aligned}
$$

You try

$$
\begin{aligned}
& 27^{\frac{2}{3}}=9 \quad 16^{\frac{3}{2}}=64 \\
& -25^{\frac{5}{2}}=-5^{5}-16^{\frac{3}{4}}=-8
\end{aligned}
$$

Rewrite in exponent form

You try

$$
\begin{array}{ll}
\sqrt[8]{a^{3}} & (\sqrt[3]{h})^{9} \\
a^{3 / 8} & h^{9 / 3}
\end{array}
$$

Write each of the following as a radical and simplify, if possible.

$$
\begin{aligned}
& x^{-\frac{1}{3}}=\frac{1}{X^{1 / 3}}=\frac{1}{\sqrt[3]{x}} \\
& 36^{-\frac{1}{2}}=\frac{1}{36^{1 / 2}}=\frac{1}{\sqrt{36}}
\end{aligned}
$$

Just a reminder.
Exponent Rules

$$
a^{m} \cdot a^{n}=a^{m+n}
$$

$$
\frac{a^{m}}{a^{n}}=a^{m-n} \quad \text { if } a \neq 0
$$

$$
\left(a^{m}\right)^{n}=a^{m \cdot n}
$$

$$
(a \cdot b)^{n}=a^{n} \cdot b^{n}
$$

$$
\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}} \quad \text { if } b \neq 0
$$

$$
\left(\frac{a}{b}\right)^{-n}=\left(\frac{b}{a}\right)^{n} \quad \text { if } a \neq 0, b \neq 0
$$

$$
\begin{aligned}
& a^{0}=1 \quad \text { if } a \neq 0 \\
& a^{-n}=\frac{1}{a^{n}} \quad \text { or } \quad \frac{1}{a^{-n}}=a^{n} \quad \text { if } a \neq 0
\end{aligned}
$$

After you simplify you should have:

- Only positive exponents.
- Each base only occurring once.
- Have no parentheses in the expression.
- No powers written to powers.

