1-3 Radicals

Definition

 nth root$$
\sqrt[n]{b}=a \text { means } b=a^{n}
$$

- if $n \geq 2$ and even then a and b must be greater than or equal to 0 .
- if $n \geq 3$ and odd, then a and b can be any real number.
$\ln \sqrt[n]{b}:$
The symbol $\sqrt{ }$ is called the radical n is called the index
b is called the radicand
if there is no index, it is 2

You try

Simplifying
If $\mathrm{n} \geq 2$ is a positive integer and a is a real number, then

$$
\begin{aligned}
& \sqrt[n]{n} a^{n}=a \text { if } n \geq 3 \text { is odd } \\
& \sqrt[n]{a^{n}} \neq|a| \text { if } n \geq 2 \text { is even }
\end{aligned}
$$

Reduce

You try

$$
\sqrt[3]{x^{3}}=x \quad \sqrt[6]{z^{6}}=|z|
$$

Secondary 2

Remember that

$$
\begin{aligned}
& \sqrt[n]{a^{n}}=a \quad \text { if } n \geq 3 \text { is odd } \\
& \sqrt[n]{a^{n}}=|a| \quad \text { if } n \geq 2 \text { is even }
\end{aligned}
$$

For example

$$
\sqrt{x^{2}}=|x| \quad \sqrt[3]{x^{3}}=x \quad \sqrt[4]{x^{4}}=|x| \quad \begin{aligned}
& \text { and so } \\
& \text { on }
\end{aligned}
$$

But to make our life easier some instructions will say "Assume all variables are greater then or equal to zero." In which case:

$$
\sqrt{x^{2}}=x \quad \sqrt[3]{x^{3}}=x \quad \sqrt[4]{x^{4}}=x
$$

SO READ YOUR INSTRUCTIONS!!!

Reduce Assuming all variables are greater then or equal to zero.
(You can either do these using rational exponents or not.)

You try
$\sqrt{48}$
$4 \sqrt[3]{54}$
$\sqrt{200 a^{2}}$
$\sqrt[4]{40}$

Reduce Assuming all variables are greater then or equal to zero.
$\sqrt{20 x^{10}}$

Simplify Assuming all variables are greater then or equal to zero.

You Try
$\sqrt[3]{128 x^{6} y^{10}}$
$\sqrt[4]{16 a^{5} b^{11}}$

$$
\text { 27) } \begin{aligned}
&-\frac{x^{4} y^{3} y^{-2}}{3^{4} y^{4}} \\
&-\frac{x^{4} y^{4-1}}{3 x^{3} y^{2}}=\frac{-x x x x y y u y}{3 x-x y} \\
& \frac{-x^{2} y^{3}}{3}
\end{aligned}
$$

Secondary 2

$$
\text { 23) } \begin{aligned}
-\frac{4 x^{2} y^{3}}{3 x^{-3}} & =\frac{-4 x^{(3)} y^{3} x^{3}}{3} \\
& =\frac{-4 x^{5} y^{3}}{3}
\end{aligned}
$$

20)

$$
\begin{aligned}
& \left(2 x^{-4} y^{3}-x^{4} y^{3}\right)^{2} \\
& \left(2-1 x^{4} x^{5} y^{3} y^{3}\right)^{2} \\
& \left(-2 x^{6} y^{3}\right)^{2} \\
& (-2)^{2} y^{2} \\
& 4 y^{2} \text { or } 2^{2} y^{2}
\end{aligned}
$$

