1-3 Radicals

Definition *n*th root

$$\sqrt[n]{b} = a$$
 means $b = a^n$

- · if $n \ge 2$ and even then a and b must be greater than or equal to 0.
- if $n \ge 3$ and odd, then a and b can be any real number.

 $\ln \sqrt[n]{b}$:

The symbol $\sqrt{\ }$ is called the radical

n is called the index

b is called the radicand

if there is no index, it is 2

You try

$$\sqrt{121} = ||$$

$$/|$$

$$||$$

$$\sqrt[3]{-216} = -6$$
 $\sqrt[3]{6} - 6$

$$\sqrt[5]{32} = 2$$

Simplifying

If n≥2 is a positive integer and a is a real number, then

$$\sqrt[n]{a^n} = a \quad \text{if } n \ge 3 \text{ is odd}$$

$$\sqrt[n]{a^n} \neq |a| \quad \text{if } n \ge 2 \text{ is even}$$

Reduce

You try

$$\sqrt[3]{x^3} = X$$

$$\sqrt[6]{z^6} = \left| Z \right|$$

Simplify

$$\sqrt{18} = 3\sqrt{2}$$
 92
 44
 $\sqrt{9}$
 $\sqrt{9}$
 $\sqrt{9}$

Simplify

Remember that

$$\sqrt[n]{a^n} = a$$
 if $n \ge 3$ is odd
 $\sqrt[n]{a^n} = |a|$ if $n \ge 2$ is even

For example

$$\sqrt{x^2} = |x|$$
 $\sqrt[3]{x^3} = x$ $\sqrt[4]{x^4} = |x|$ and so on

But to make our life easier some instructions will say "Assume all variables are greater then or equal to zero." In which case:

$$\sqrt{x^2} = x \qquad \sqrt[3]{x^3} = x \qquad \sqrt[4]{x^4} = x \qquad \text{on}$$

SO READ YOUR INSTRUCTIONS!!!

Reduce Assuming all variables are greater then or equal to zero.

(You can either do these using rational exponents or not.)

You try

$$\sqrt{48}$$

$$4\sqrt[3]{54}$$

$$\sqrt{200a^2}$$

$$\sqrt[4]{40}$$

Reduce Assuming all variables are greater then or equal to zero.

$$\sqrt{20x^{10}}$$

You try
$$\sqrt{75a^6} = 5 \sqrt{3} \sqrt{3}$$

$$25 3$$

$$4$$

Simplify Assuming all variables are greater then or equal to zero.

You Try

$$\sqrt[3]{128x^6y^{10}}$$

$$\sqrt[4]{16a^5b^{11}}$$

$$23) - \frac{4x^{2}x^{3}}{3x^{-3}} = -\frac{4x^{2}y^{3}}{3}$$

$$= -\frac{4x^{5}y^{3}}{3}$$

