Warm Up

Simplify.

1) $\underset{\sim}{3} b^{\prime} \cdot \stackrel{+}{4} b^{3}$
$12 b^{4}$

Simplify. your answer should contain only positive
3) $\frac{3 x^{4-2}}{x^{2}} 3 x^{2}$

2-1 Adding and Subtracting Polynomials

Objective: I will be able to add and subtract polynomials.

A polynomial can have constants, variables and exponents, but never division by a variable.

constants (like $\mathbf{3},-\mathbf{2 0}$, or $1 / 2$)
variables (like \boldsymbol{x} and \boldsymbol{y})
exponents (like the 2 in y^{2}), but only $\mathbf{0}, \mathbf{1 , 2 , 3}, \ldots$ etc are allowed
\ldots not division by a variable (so something like $\mathbf{2} / \mathbf{x}$ is right out)

Polynomial or Not?

A Polynomial

Add each polynomial by combining like terms.

1. $(4 x+3)+(6 x+2)$
2. $(2 x-3)+(4-6 x)$

$$
\begin{array}{r}
4 x+3+6 x+2 \\
10 x+5
\end{array}
$$

$$
\frac{2 x(-3+4)-6 x}{-4 x+1}
$$

3. $\left(2 y^{2}-2 y+7\right)+\left(y^{2}-11+12 y\right)$

$$
\frac{2 y^{2}-2 y+2+y^{2}-11 \sqrt{+12 y}}{3 y^{2}+10 y-4}
$$

You try...

1. $(2 x+7)+(2 x+3)$
2. $(8 x+5)+(-2 x-9)$
$2 x+7+2 x+3$

Subtract each polynomial.

1. $(4 x+3)-(6 x+2)$
2. $(2 x-3)-(4-6 x)$

$$
4 x+3-6 x-2
$$

$$
2 x-3-4+6 x
$$

$$
-2 x+1
$$ $8 x-7$

3. $\left(8 y^{2}+5-y\right)-\left(12 y^{2}+3 y-9\right)$

$$
\begin{aligned}
& 8 y^{2}+5-y-12 y^{2}-3 y+9 \\
&-4 y^{2}-4 y+14
\end{aligned}
$$

You try? Right now!

1. $(2 x+7)-(2 x+3)$
$\begin{array}{cl}2 x+7-2 x+3 & \begin{array}{ll}2 x-2 x=0 \\ 4 & 7-3=4\end{array}\end{array}$
2. $\left(2 y^{2}-2 y+7+-\left(y^{2}-11+12 y\right)\right.$

$$
2 y^{2}-2 y+7-y^{2}+11-12 y
$$

$$
y^{2}+18-14 y
$$

$$
\begin{gathered}
(8 x+5)-(-2 x-9) \\
8 x+5+2 x+9 \\
10 x+14
\end{gathered}
$$

Be careful! You can only combine like terms.

$$
\left(y^{4}-2 y+6 y^{2}\right)+\left(2 y^{2}-11 y^{4}+12 y-3 y^{3}\right)
$$

