1-2 Exponent Rules

Simplify (Show why)

$$
x^{2} \cdot x^{4}=X^{6}
$$

Product Rule for exponents

$$
a^{m} \cdot a^{n} a^{m+n}
$$

Simplify

$$
2^{2}: 2^{3}=2^{5} \quad 3 z^{2} \cdot 4 z^{4}=12 z^{6}
$$

Quotient Rule for exponents

$\frac{a^{m}}{a^{n}}=a^{m-n} \quad$ if $a \neq 0$

Simplify

$$
\frac{8^{5}}{8^{3}}=8^{5-3}=8^{2} \frac{27 z^{9} \cdot 4}{12 z^{4}}=\frac{9}{4} z^{5}
$$

Zero-exponent Rule
 $$
a^{0}=1 \quad \text { if } a \neq 0
$$

Simplify

$$
3^{0}=1 \quad \pi^{0}=1 \quad\left(\partial \theta+\Phi \Omega-0^{0}<\neq 1\right.
$$

You try

Power rule for exponential expressions

$$
\left(a^{m}\right)^{n}=a^{m \cdot n}
$$

sinus $\left(4^{3}\right)\left(4^{3}\right)\left(4^{3}\right)\left(4^{3}\right.$

$$
\begin{array}{lll}
4^{15} & (-3)^{3} & \left.(-3)^{3}\right]^{2}
\end{array}
$$

Product to a power

$$
\left(a \cdot \overparen{b)^{n}}=a^{n} \cdot b^{n}\right.
$$

Simplify

$$
(3 z)^{4}
$$

$$
\begin{aligned}
& (-3)^{2} a^{4} \\
& \left(-3 a^{2}\right)^{2}
\end{aligned}
$$

$$
\left(3 y^{-2}\right)^{-3} \quad\left(-3 a^{2}\right)^{2}
$$

$$
\begin{gathered}
\left(3^{1}\right)^{4}\left(z^{1}\right)^{4} \\
3^{4} z^{4}
\end{gathered}
$$

$$
3^{-3} y^{6}
$$

$$
3^{2} a^{4}
$$

$$
9 a^{4}
$$

You try

$$
\begin{array}{lll}
\left(\frac{\pi}{3}\right)^{4} & \left(\frac{4}{3}\right)^{-2} & \left(\frac{3 a^{-2}}{b^{4}}\right) \\
\frac{z^{4}}{3^{4}} & \frac{3^{2}}{4^{2}} & \frac{3^{3}-a^{-6}}{6^{72}}
\end{array}
$$

$$
\begin{aligned}
& a^{0}=1 \quad \text { if } a \neq 0 \\
& a^{-n}=\frac{1}{a^{n}} \quad \text { or } \quad \frac{1}{a^{-n}}=a^{n} \quad \text { if } a \neq 0 \\
& a^{m} \cdot a^{n}=a^{m+n} \\
& \frac{a^{m}}{a^{n}}=a^{m-n} \quad \text { if } a \neq 0 \\
& \left(a^{m}\right)^{n}=a^{m \cdot n} \\
& (a \cdot b)^{n}=a^{n} \cdot b^{n} \\
& \left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}} \quad \text { if } b \neq 0 \\
& \left(\frac{a}{b}\right)^{-n}=\left(\frac{b}{a}\right)^{n} \quad \text { if } a \neq 0, b \neq 0
\end{aligned}
$$

