Quiz
Identify a, b and c .

1) $3 x^{2}-5 x-42=0$

$$
a=3 \quad b=-5 \quad C=-42
$$

solve with the quadratic formula $\frac{3-11}{4}=\frac{-8}{4}=-2$

$$
\text { 2) } \begin{aligned}
& 2 x^{2}-3 x-14=0 \dot{j} 9+112 \\
& x= \frac{-(-3) \pm \sqrt{(-3)^{2}-94(2)(-14)}}{2(2)}=\frac{3 \pm \sqrt{121}}{4} \\
&=\frac{3 \pm(11)}{4} \quad \frac{3-(4)}{4}=\left(\frac{14}{4}\right)\left(\frac{7}{2}\right)=3.5
\end{aligned}
$$

Quadratic Methods

Objective: I can determine which method is best for solving a quadratic problem.

When would you use each method? Square root:

Factor:

Quadratic formula:

Choose the method and solve for x

$$
\begin{array}{cc}
\left(x^{2}+2 x=35\right. & \text { 3) } \begin{array}{c}
9 x^{2}-1=800 \\
-55 \\
+1
\end{array} \\
1 x^{2}+2 x-35=0 & \frac{9 x^{2}}{}=\frac{80}{9} \\
\sqrt{7-5}=2 & \sqrt{9} \\
(x+7)(x-5)=0 & \sqrt{x^{2}}=\sqrt{89} \\
x+7=0 x-5=0 & x= \pm \sqrt{89} \\
x=-7 x=5 & x=5
\end{array}
$$

Choose the method and solve for x

$$
\begin{aligned}
& 5 x^{2}=-12-2 x \\
& 7 x^{2}+x=0 \\
& +12+2 x \\
& x(x+1)=0 \\
& x^{2}+2 x+12=0 \\
& x=0 \quad x+1=0 \\
& x=-1 \\
& x=\frac{-2 \pm \sqrt{(23004(1)(12)}}{2(1)} \\
& x=-2 \pm \sqrt{-044} \\
& x=\frac{-2 \pm i{ }^{2}}{2} \\
& x^{2}+x=0 \\
& \frac{x^{2}}{x}=\frac{-x}{x} \\
& x=-1 \quad x=0
\end{aligned}
$$

Choose the method and solve for x

$$
\left\{\begin{array}{l}
x^{2}=-15+8 x \\
+15-8 x \\
x^{2}-8 x+15=0 \\
-5-3=-8 \\
x-5=0 \\
x-5 \\
x=3 \\
x-5=0
\end{array}\right.
$$

$$
17
$$

$$
9 x^{2}-22=-6 x
$$

$$
9 x^{2}+6 x-22=0
$$

$$
x=\frac{-6 \pm \sqrt{\left.(6)^{2}-4(9)^{2} 20\right)}}{2(9)}
$$

$$
\begin{gathered}
x=\frac{-6 \pm 28.7}{18} \\
\frac{(-6+28.7)}{18}\left(\frac{-6-28.7)}{18}\right. \\
1.2 \quad-1.9^{18}
\end{gathered}
$$

15)

$$
\begin{array}{ll}
4 x^{2}-10=134 & 11) \\
+10 & 12 a^{2}-4 a=-12 \\
+10 & 12 a^{2}-4 a+12=0 \\
\frac{4 x^{2}}{4}=\frac{144}{4} & a=\frac{\left.-(-4) \pm \sqrt{(-4)^{2}-44(12) i}\right)}{2(12)} \\
\sqrt{x^{2}+\sqrt{36}} & a=\frac{4 \pm \sqrt{-560}}{24} \\
x= \pm 6 i & \\
a=\frac{4 \pm 4 i \sqrt{35}}{}=\frac{4 \pm \sqrt{560}}{24}<20 \\
a=\frac{1 \pm \sqrt{3} 3^{24}}{6}
\end{array}
$$

