Warm up

Solve by factoring
Solve Using the Quadratic formula
$7 x^{2}+8 x+1=0$
$83 x^{2}+4 x-5=0$
$7 x^{2}+7 x+1 x+1$
$x=-(4)+$
$7 x(x+1) \left\lvert\,(x+1) \frac{?}{1} 1\right.$
$-4+8.710 \sqrt{4^{2}-4(3)(-5)}$
$=.785)$
$(7 x+1)(x+1)=0$

Quiz
Solve by Factoring

4-4 Quadratic Formula with Imaginary Numbers

Objective: I can solve quadratic equations that have imaginary roots using the Quadratic Formula.

What kind of number is it if we get a negative inside the radical?

When we use the Quadratic Formisial we $\frac{2 \pm i \sqrt{6}}{32(1)}$ can get numbers that have both real and imaginary parts.

REMEMBER TO SIMPLIFY!

Solve using the Quadratic Formula.

$$
\begin{aligned}
& x^{2} \quad x^{2}-4 x=-13 \\
& x^{2}+x+5=0 \\
& a=1 \\
& +13 \\
& x=-4 \\
& 13+x^{2}-4 x=0 \quad a=1 \\
& c=13 \\
& x=\frac{-(1) \pm \sqrt{1^{2}-4(1)(5)}}{2(1)} \\
& \dot{x}=\frac{-(-4) \pm x^{16-52}(-4)^{2}-40(0)=5}{2(1)} \quad x=\frac{-1 \pm \sqrt{-19}}{2} \\
& \begin{array}{l}
x=4 \pm \sqrt{\sqrt{36}} \\
x=\frac{4 \pm 6 i}{-25}=2 \pm 3_{i}
\end{array} \\
& x=\frac{-1 \pm i \sqrt{19}}{2}
\end{aligned}
$$

How many sotutimis) did we end up with?
What kind of solutions) are they?

