Warm up
Simplify
Solve Using the Quadratic formula

$$
\begin{aligned}
\frac{5 \pm \sqrt{2.4}}{2 \sqrt[4]{22}} & x=\frac{3 x^{2}+4 x-5=0}{2(3)} \\
\frac{5 \pm 2 \sqrt{6}}{2} & x=\frac{-4 \pm 8.7}{6} \\
14.5 \frac{9.5}{9.5} & =\frac{-4+8.7}{6}=0.78 \frac{-4-8.7}{6}=-21
\end{aligned}
$$

Complex Operations

$i=\sqrt{-1}$

$i^{2}=-1$
$i^{3}=-\sqrt{-1}=i_{i}^{2} \cdot=-\sqrt{-1}$

Identify the real and imaginary parts of each complex number.

Write each of the following as a pure imaginary number.

You Try

$$
\begin{array}{ll}
\sqrt{-12} & \sqrt{-5} \\
2 i \sqrt{3} & \sqrt{5} i
\end{array} \quad i \sqrt{5}
$$

$$
\begin{gathered}
\sqrt{-1 \sqrt{36}} \\
6^{7} \\
\sqrt{-36} \\
6 i
\end{gathered}
$$

$$
\begin{aligned}
& \sqrt{n^{2}}=\sqrt{36} \text { Square Root Property } \\
& \sqrt{x^{2}}=124=2 \sqrt{6} \sqrt{k^{2}}=\sqrt{98} \\
& n=6,-6 \quad x=\frac{46}{2 \sqrt{6}},-2 \sqrt{6} \\
& n= \pm 6 \\
& x= \pm 2 \sqrt{6} \quad k= \pm \infty \sqrt{78}
\end{aligned}
$$

$$
\text { 18) } \begin{aligned}
& 9 x^{2}-7=722 \\
&+7+7 \\
& 9 x^{2}=729 \\
& x=9,-99 \\
& 9 \frac{72}{9}
\end{aligned}
$$

