## 10-3

# Radian Measure, Arc Length, and Sectors 

I can convert between degrees and radians
I can find exact trig values
I can find arc lengths
I can find the area of sectors


Converting between degrees and radians:

$$
x^{\circ} \cdot \frac{\pi}{180^{\circ}}=\text { radians } \quad \underset{\text { radians } \bullet \frac{180^{\circ}}{\pi}=\operatorname{deg} \text { rees }}{\longrightarrow}
$$

OR


## Example:

Convert degrees to radians:

$$
\text { a) } 90^{\circ} \cdot \frac{\pi}{180}=\frac{1 \pi}{2} \text { b } 135 \frac{\pi}{180}=\frac{3 \pi}{4}
$$

Convert radians to degrees:

## Recall:

## Circumference of a circle

$$
C=2 \pi r
$$

## Arc Length:

A proportion of the circumference of the circle.
You can use the measure of the arc (in degrees) to find its length (in linear units.)


Degrees
arclength $=\left(\frac{\overparen{(4 B}}{360^{\circ}}\right) 2 \pi r$



## You Try:

Find the length of $A B$

$$
\begin{aligned}
& A L=\frac{\theta}{360} \cdot 2 \pi r \\
& A L=\frac{200}{360} \cdot 2 \pi(6)=12.56
\end{aligned}
$$

Example:
Find the length of $\overparen{A B}$

$$
\frac{45}{360} \cdot \pi R(2)=\underset{(12)}{2}=9.424 \mathrm{~cm}
$$

You try:
Find the length of $A B$


Example:
Find the indicated measure of each:


$$
\begin{aligned}
& \frac{13500}{3500}=47.123 \\
& \frac{360}{60} \cdot 15=C \\
& 135.2 \pi(10)+235990=C
\end{aligned}
$$

$$
\frac{18 y}{2 \pi}=\frac{2 \pi r}{2 \pi} \frac{90}{360}
$$

$$
\begin{gathered}
\frac{4360}{90} 9=r \cdot \frac{90}{360} \cdot \frac{360}{90} \\
36=r
\end{gathered}
$$

## Recall:

Area of a circle

$$
A=\pi r^{2}
$$

## Sectors:

A sector of a circle is the region (area) bounded by two radii of the circlaterrd 赛有ir intercept arc. $\quad S A=\frac{\theta}{360} A$

Degrees
Sectorarea $=\left(\frac{\widehat{(4 B)}}{360^{\circ}}\right) \pi r^{2}$

## Example:

Find the area of the sector:

$$
\begin{aligned}
S A & =\frac{\theta}{360} \pi r^{2} \\
& =\frac{60}{3600} \pi(10)^{2} \\
& =52.4 \mathrm{in}^{2}
\end{aligned}
$$



Example:
Find the shaded area:

$$
\begin{aligned}
S A & =\frac{\theta}{360} \cdot \pi r r^{2} \\
& =\frac{200}{360} \pi(8.5)^{2} \\
& =126.1 \mathrm{~m}^{2}
\end{aligned}
$$

You try:
Find the area of the shaded region:

