Unit 6: Exponential Functions 6-1: Exponent Rules

Objectives: I can simplify exponents

Vocab:

Base:

Main number
Power: Exponent on a number

Exponent

Like-terms review x^{3} Group the like terms and then

What's the difference between:

$$
\begin{aligned}
& x+x+x=3 x \\
& x \cdot x \cdot x=x^{3} \\
& 2 x+2 x+2 x=6 x \\
& \underline{2 x \cdot 2 x \cdot 2 x}=8 x^{3}
\end{aligned}
$$

Practice Expanding and Simplifying:
$x^{(4)}=\underline{x} \cdot \underline{x} \cdot \underline{x} \cdot \underline{x}$ $x^{2}=X \cdot X$
$\underline{2}^{4}=2 \cdot 2 \cdot 2 \cdot 2$

$$
A \cdot y^{5}=y \cdot y \cdot y \cdot y \cdot y
$$

$$
(2 \underline{a})^{3}=2 a \cdot 2 a \cdot 2 a
$$

$$
(j k)^{5}=>k \cdot J K \cdot J k \cdot J k \cdot J k
$$

$$
x \cdot x \cdot x=x^{3}
$$

$$
x \cdot x \cdot x \cdot x \cdot x=x^{5}
$$

$$
5 \cdot 5 \cdot 5 \cdot 5=5^{4}
$$

$$
\underline{z} \cdot \underline{z} \cdot z \cdot \underline{z} \cdot z \cdot z=2^{6}
$$

$$
(4 y)(4 y)(4 y)=(4 y)^{3}
$$

$$
(a b)(a b)(a b)(a b)(a b)=\left(\sim \phi^{\circ}\right.
$$

Name	Rule	Examples
ADDING \& SUBTRACTING MONOMIALS	COMBINE LIKE TERMS!!! (DO NOT CHANGE common variables and exponents):	1. $9 x^{2} y-10 x^{2} y=-1 x^{2} y$ 2. Subtract $6 w$ from $8 w .=2 \omega$
PRODUCT RULE	$x^{a}=x^{a+b}$	$\text { 1. } \text { 2. }_{\text {2 }\left(-2 a^{2} b\right) \cdot\left(7 a^{3} b\right)=-14 a^{5} b^{2}}$
POWER RULE	$\left(x^{a}\right)^{b}=$	1. $\left(x^{2}\right)^{3}=$ 2. $\left(-2 m^{5}\right)^{2} \cdot m^{3}=$
QUOTIENT RULE	$\frac{x^{a}}{x^{b}}=$	1. $\frac{27 x^{5}}{42 x}=$ 2. $\frac{\left(y^{2}\right)^{2}}{y^{4}}=$
NEGATIVE EXPONENT RULE	$x^{-a}=$	1. $-5 x^{-2}=$ 2. $\frac{4 k^{2}}{8 k^{5}}=$
ZERO EXPONENT RULE	$x^{0}=$	1. $7 x^{0}=$ 2. $\frac{\left(w^{4}\right)^{2}}{w^{8}}=$

ADDING $\&$ SUBTRACTING MONOMIALS

COMBINE LIKE TERMS!!

(DO NOT CHANGE common variables and exponents!!

1. $9 x^{2} y-10 x^{2} y=$
2. Subtract $6 w$ from $8 w$.

$$
\begin{aligned}
& \begin{array}{l|l}
\text { PRODUCT RULE } & x^{a} \odot x^{b}=x^{a+b} \\
\hline
\end{array} \\
& \left(x^{a}\right)^{b}=x^{a \cdot b} \\
& \text { 1. } \left.\left(x^{2}\right)^{3}\right)=\frac{2+2+2}{x \cdot x \cdot x}=x^{6}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
=4 \mathrm{mMMMM}, \frac{\mathrm{MMMmM3}}{5} \\
=4 \mathrm{~m}^{3} \frac{5}{5}
\end{array}
\end{aligned}
$$

$\frac{x^{a}}{x^{b}}=x^{a-b}$
 $$
\begin{aligned} & \text { 1. } \frac{27 x^{5}}{42 x}=\frac{97}{42} \cdot \frac{x^{5}}{x^{\prime}}=\frac{9}{14} x^{4} . \\ & \text { 2. } \frac{y^{2} p}{y^{4}}=\frac{67}{2 x} \frac{y^{4}}{y^{4}}=y^{0}=1 \end{aligned}
$$

NEGATIVE EXPONENT RULE

$$
x^{-a}=\frac{1}{x^{a}}
$$

1. $-5 k^{-2}=\frac{-5}{x^{2}}$
2. $\frac{4 k^{2}}{8 / k^{5}=\frac{4 \div 4}{} \div \frac{4}{8}}$

$$
\frac{1 k}{2}^{-3}=\frac{1}{2 k^{3}}
$$

ZERO EXPONENT RULE

$$
x^{0}=1
$$

$$
\text { 1. } 7 k_{c^{0}}=7 \cdot 1=7
$$

$$
\text { 2. } \frac{\left(w^{4}\right)^{2}}{w^{8}}=\frac{w^{8-8}}{w^{8}}=w^{0}=1
$$

Simplify each of the following:

$x \cdot x \cdot x \cdot x \cdot x=$
$x^{4} \cdot x^{9}=$
$(a b)^{14}=$
$\left(\frac{a}{2}\right)^{4}=$
k^{12}
$\overline{k^{5}}=$
$\left(\frac{1}{4}\right)^{0}=$

